Package: seminr 2.3.1

Nicholas Patrick Danks

seminr: Building and Estimating Structural Equation Models

A powerful, easy to syntax for specifying and estimating complex Structural Equation Models. Models can be estimated using Partial Least Squares Path Modeling or Covariance-Based Structural Equation Modeling or covariance based Confirmatory Factor Analysis. Methods described in Ray, Danks, and Valdez (2021).

Authors:Soumya Ray [aut, ths], Nicholas Patrick Danks [aut, cre], André Calero Valdez [aut], Juan Manuel Velasquez Estrada [ctb], James Uanhoro [ctb], Johannes Nakayama [ctb], Lilian Koyan [ctb], Laura Burbach [ctb], Arturo Heynar Cano Bejar [ctb], Susanne Adler [ctb]

seminr_2.3.1.tar.gz
seminr_2.3.1.zip(r-4.5)seminr_2.3.1.zip(r-4.4)seminr_2.3.1.zip(r-4.3)
seminr_2.3.1.tgz(r-4.4-any)seminr_2.3.1.tgz(r-4.3-any)
seminr_2.3.1.tar.gz(r-4.5-noble)seminr_2.3.1.tar.gz(r-4.4-noble)
seminr_2.3.1.tgz(r-4.4-emscripten)seminr_2.3.1.tgz(r-4.3-emscripten)
seminr.pdf |seminr.html
seminr/json (API)

# Install 'seminr' in R:
install.packages('seminr', repos = c('https://sem-in-r.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sem-in-r/seminr/issues

Datasets:
  • corp_rep_data - Measurement Instrument for the Corporate Reputation Model
  • corp_rep_data2 - A Second Measurement Instrument for the Corporate Reputation Model
  • influencer_data - Measurement Instrument for the Influencer Model
  • mobi - Measurement Instrument for the Mobile Phone Industry

On CRAN:

common-factorscompositesconstructpls-models

7.33 score 58 stars 203 scripts 1.8k downloads 69 exports 89 dependencies

Last updated 2 years agofrom:ae2524aae5. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winERRORNov 12 2024
R-4.5-linuxERRORNov 12 2024
R-4.4-winERRORNov 12 2024
R-4.4-macERRORNov 12 2024
R-4.3-winERRORNov 12 2024
R-4.3-macERRORNov 12 2024

Exports:as.reflectiveassociationsboot_paths_dfbootstrap_modelbrowse_plotcheck_test_plotcompositecompute_itcriteria_weightsconstructscorrelation_weightscsem2seminrdot_graphdot_graph_htmtedge_template_defaultedge_template_minimalestimate_cbsemestimate_cfaestimate_lavaan_ten_bergeestimate_plsestimate_pls_mgafSquaredget_theme_dochigher_compositehigher_reflectiveinteraction_termis_sinkitem_errorslast_seminr_plotmean_replacementmode_Amode_Bmulti_itemsnode_endo_template_defaultnode_exo_template_defaultorthogonalpath_factorialpath_weightingpathsplot_htmtplot_interactionplot_scoresPLScpredict_DApredict_EApredict_plsproduct_indicatorreflectiveregression_weightsrelationshipsreport_pathsrerunrho_Asave_plotseminr_theme_createseminr_theme_darkseminr_theme_defaultseminr_theme_getseminr_theme_oldseminr_theme_setseminr_theme_smartset_last_seminr_plotsimplePLSsingle_itemslope_analysisspecific_effect_significancespecify_modeltotal_indirect_citwo_stageunit_weights

Dependencies:base64encbitbit64briobslibcachemcallrclicliprcolorspacecpp11crayoncurldescDiagrammeRDiagrammeRsvgdiffobjdigestdplyrevaluatefansifarverfastmapfontawesomefsgenericsgluehighrhmshtmltoolshtmlwidgetsigraphjquerylibjsonliteknitrlabelinglatticelavaanlifecyclemagrittrMASSMatrixmemoisemimemnormtmunsellnumDerivpbivnormpillarpkgbuildpkgconfigpkgloadpraiseprettyunitsprocessxprogresspspurrrquadprogR6rappdirsRColorBrewerRcppreadrrlangrmarkdownrprojrootrstudioapisassscalesstringistringrtestthattibbletidyrtidyselecttinytextzdbutf8V8vctrsviridisLitevisNetworkvroomwaldowebpwithrxfunyaml

SEMinR

Rendered fromSEMinR.Rmdusingknitr::rmarkdownon Nov 12 2024.

Last update: 2021-04-27
Started: 2016-10-11

Readme and manuals

Help Manual

Help pageTopics
Converts all contructs of a measurement model, or just a single construct into reflective factors.as.reflective
Converts a contruct of a measurement model into a reflective factor.as.reflective.construct
Converts interaction of a measurement model into a reflective factors.as.reflective.interaction
Converts all contructs of a measurement model, or just a single construct into reflective factors.as.reflective.measurement_model
Specifies inter-item covariances that should be supplied to CBSEM estimation ('estimate_cbsem') or CFA estimation ('estimate_cfa')associations
Return all path bootstraps as a long dataframe. Columns of the dataframes are specified paths and rows are the estimated coefficients for the paths at each bootstrap iteration.boot_paths_df
seminr bootstrap_model Functionbootstrap_model
Open Edotor graphViz Website with the preloaded in the Browserbrowse_plot
A function to create regression plots (maybe not needed?)check_test_plot
Composite construct measurement model specificationcomposite
Function to calculate Akaike weights for IT Criteriacompute_itcriteria_weights
Measurement functionsconstructs
Returns R-sq of a dv given correlation matrix of ivs, dv cors <- cbsem_summary$descriptives$correlations$constructs cor_rsq(cors, dv_name = "Value", iv_names = c("Image", "Quality"))cor_rsq
Measurement Instrument for the Corporate Reputation Modelcorp_rep_data
A Second Measurement Instrument for the Corporate Reputation Modelcorp_rep_data2
seminr csem2seminr() functioncsem2seminr
Cross-tabulates columns of a dataframe into a matrix with NAs for unspecified pairsdf_xtab_matrix
Generates the dot code for the measurement modeldot_component_mm
Generate a dot graph from various SEMinR modelsdot_graph dot_graph.boot_seminr_model dot_graph.cbsem_model dot_graph.cfa_model dot_graph.measurement_model dot_graph.pls_model dot_graph.specified_model dot_graph.structural_model
Creates a dot string with a network graph of constructs based on HTMT measuresdot_graph_htmt
generates the dot code for a subgraph (per construct)dot_subcomponent_mm
The default template for labeling bootstrapped edgesedge_template_default
A minimal template for labeling bootstrapped edges that only shows the bootstrapped mean valueedge_template_minimal
Wrap a text in single quotesesc_node
seminr estimate_cbsem() functionestimate_cbsem
seminr estimate_cfa() functionestimate_cfa
seminr estimate_lavaan_ten_berge() functionestimate_lavaan_ten_berge
seminr estimate_pls() functionestimate_pls
Performs PLS-MGA to report significance of path differences between two subgroups of dataestimate_pls_mga
extract bootstrapped statistics from an edge using a row_indexextract_bootstrapped_values
Helper function that applies formatting to each constructextract_htmt_nodes
extracts the constructs and their types from the modelextract_mm_coding
gets the mm_edge value (loading, weight) for bootstrapped and regular modelsextract_mm_edge_value
extract mm edges from model for a given index of all constructsextract_mm_edges
gets the individual nodes and applies formattingextract_mm_nodes
Helper function that applies formatting to each constructextract_sm_nodes
Helps to render a node label for endogenous variablesformat_endo_node_label
Helps to render a node label for exogenous variablesformat_exo_node_label
seminr fSquared FunctionfSquared
Gets the optimal size for construct elements in the plotget_construct_element_size
Returns the type of a construct from a modelget_construct_type
Gets the optimal size for manifest elements in the plotget_manifest_element_size
individual styles for measurement model edgesget_mm_edge_style
Get a string to insert into a node specification using the themed shapeget_mm_node_shape
get global measurement model node styleget_mm_node_style
Get a string to insert into a node specification using the themed shapeget_sm_node_shape
Formats the style of the structural model edgesget_value_dependent_mm_edge_style
Formats the style of the structural model edgesget_value_dependent_sm_edge_style
higher_compositehigher_composite
higher_reflectivehigher_reflective
Measurement Instrument for the Influencer Modelinfluencer_data
Interaction functioninteraction_term
Tests whether the i_th construct is endogenous or notis_sink
Specifies pair of items, or sets of items, that should covary. Used to specify error covariances for 'associations'.item_errors
Function to clean data of omitted values by mean replacementmean_replacement
Measurement Instrument for the Mobile Phone Industrymobi
Outer weighting scheme functions to estimate construct weighting.correlation_weights mode_A mode_A,
Outer weighting scheme functions to estimate construct weighting.mode_B mode_B, regression_weights
Multi-items measurement model specificationmulti_items
The default template for labeling endogenous construct nodesnode_endo_template_default
The default template for labeling exogenous construct nodesnode_exo_template_default
'orthogonal' creates interaction measurement items by using the orthogonalized approach whereinorthogonal
Inner weighting scheme functions to estimate inner paths matrixpath_factorial
Inner weighting scheme functions to estimate inner paths matrixpath_weighting
Plots a network graph of constructs based on HTMT measuresplot_htmt
Function for plotting interaction plot for moderated PLS or CBSEM modelplot_interaction
Function for plotting the measurement model reliability metrics of a PLS modelplot.reliability_table
Plot various SEMinR modelsplot.seminr_model
seminr PLSc FunctionPLSc
Predictive Schemepredict_DA
Predictive Schemepredict_EA
Predict_pls performs either k-fold or LOOCV on a SEMinR PLS model and generates predictionspredict_pls
Summary function for PLS-MGAprint.seminr_pls_mga
'product_indicator' creates interaction measurement items by scaled product indicator approach.product_indicator
Reflective construct measurement model specificationreflective
Structural specification functions for seminr packagepaths relationships
Functions for reporting the Path Coefficients and R2 of endogenous constructs and for generating a scatterplot matrix of construct scores.plot_scores report_paths
Reruns a previously specified seminr model/analysisrerun
Reruns a previously specified seminr PLS modelrerun.pls_model
seminr rho_A Functionrho_A
Saves a SEMinR model plot to filesave_plot
Create a theme for a seminr graph visualizationseminr_theme_create
The theme function for an inverted theme on black background.seminr_theme_dark
Get and set the active themeseminr_theme_get seminr_theme_set
A theme function for a basic b/w themeseminr_theme_old
A colored themeseminr_theme_default seminr_theme_smart
seminr simplePLS FunctionsimplePLS
Single-item measurement model specificationsingle_item
Function for plotting a slope analysis for an interaction in a PLS modelslope_analysis
seminr specific effect significance functionspecific_effect_significance
seminr specify_model() functionspecify_model
Standardize (scale) a matrix/df and report interpretable errorsstandardize_safely
seminr total indirect confidence intervals functiontotal_indirect_ci
Creates an interaction measurement item using a two-stage approach. The two-stage procedure for both PLS and CBSEM models estimates construct scores in the first stage, and uses them to produce a single-item product item for the interaction term in the second stage. For a PLS model, the first stage uses PLS to compute construct scores. For a CBSEM model, the first stage uses a CFA to produce ten Berge construct scores.two_stage
Outer weighting scheme functions to estimate construct weighting.unit_weights